## Chem 116 Lecture 10

10-7-08 (LL)

## i-clicker question

Answer: $\mathrm{A}, \mathrm{Na}$ and Cl ions
Solute-Ions
Solvent- $\mathrm{H}_{2} \mathrm{O}$
Once NaCl is mixed into the solution is it no longer in the solid form, it breaks into ions

## Know the difference between mass and moles

What does the "partial" pressure of He mean? Fraction on the He atoms that collide with the walls of the container

Pressure is from collision of gas particles with the walls
Boiling - The vapor pressure of the solvent is at or higher than $\mathrm{P}_{\mathrm{atm}}$
Water- extends a liquid phase, increase the boiling point and decreases the melting point
Normal boiling point example: Pure Water boils at 100.00C when the $\mathrm{P}_{\mathrm{atm}}=1 \mathrm{~atm}$ (normal pressure)

In a solution that contains a solvent and solute has a higher boiling point then just the solvent alone

## What does the boiling point elevation depend on?

Being solute and not just pure solvent
Non idea solute has a non negligible vapor pressure

## Particle level model of boiling point elevation

In a solution (solute + solvent) there are less water molecules escaping into the vapor phase because of the ion - dipole forces that are holding the water molecules and solvent molecules together

Also more energy is holding the water molecules and solvent molecules together so that less water molecules can escape into the vapor phase

Vapor Pressure of solvent over solution vs. vapor pressure of pure solvent
Solution vapor pressure is lower than solvent vapor pressure

Boiling point of solution is higher than boiling point of solvent. Because it requires a higher temperature to reach the same vapor pressure

Effective molality $=(\mathrm{i}) *$ (Molality of units dissolved)
$\mathbf{i}=$ How many parts the solute breaks into ex: NaCl breaks into $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ions so $\mathbf{i}$ would be 2
$\mathbf{K}$ = a constant of nature that depends on the Solvent only

## An example: Boiling point elevation in a solution

1) Solvent- water $75 \%$ by mass

Solute- $\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH} 25 \%$ by mass
Solution $\mathrm{T}_{\mathrm{b}}=$ ?
$\mathrm{T}_{\mathrm{b}}$ - (effective molality)( $\mathrm{K}_{\mathrm{b}}$ solvent)
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{OH}$ is molecular so $\mathrm{i}=1$
$\mathrm{m}=$ molality $=$ mols solute $/ \mathrm{kg}$ solvent
$\mathrm{m}=25.0 \mathrm{~g} \mathrm{HOCH} \mathrm{CH}_{2} \mathrm{OH} / 62.1 \mathrm{~g} / \mathrm{mol} / 75 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / 1000=5.368 \mathrm{~m}$
$\mathrm{T}_{\mathrm{b}}=(5.368)(0.51 \mathrm{c} / \mathrm{m})=2.7 \mathrm{C} *$ this is only the temperature change
$\mathrm{T}_{\mathrm{b}}$ solution $=100.0 \mathrm{C}+2.7 \mathrm{C}=102.7 \mathrm{C}$
(100.0C is the BP of pure water)

## An example: Vapor Pressure in a solution

- Always helpful to draw pictures

Colligative properties= Comparison between pure solvent and solution
P water= 1070 torr ( in gas phase at 110C)
Vapor pressure of solvent is lower over the solution because the solute is in the way (molecules can not escape as easily)

Patm- 1.00atm

Solution $=$ solvent + solute
P of water in the solution = (mole fraction of Xwater in the solution) * (vapor pressure of pure water)

Xwater $=$ mol fraction
Xwater= Pwater/ P (pure) water
760 torr/ 1070 torr= .710 torr Xwater
$1-.710=.290 \mathrm{X}$ ethylene glycol

